Mechanics of the Cell

Mechanics of the Cell by David Boal
Publisher : Cambridge University Press
Release : 2002
More Info

A biological physics text for a multidisciplinary audience, exploring the architectural structure of the cell.

Cell Mechanics

Cell Mechanics by Yu-Li Wang
Publisher : Academic Press
Release : 2007-07-05
More Info

Cell mechanics is the field of study that looks at how cells detect, modify, and respond to the physical properties of the cell environment. Cells communicate with each other through chemical and physical signals which are involved in a range of process from embryogenesis and wound healing to pathological conditions such as cancerous invasion. Similar principles are also likely to be critical for success in regenerative medicine. Cell mechanics is thus central to understanding these principles. As cell mechanics draws from the fields of biology, chemistry, physics, engineering, and mathematics, this book aims not only to provide a collection of research methods, but also to develop a common language among scientists who share the interest in cell mechanics but enter the field with diverse backgrounds. To this end all of the contributing authors have sought to explain in plain language the nature of the biological problems, the rationale for the approaches, in addition to the methods themselves. In addition, to balance practical utility against conceptual advances, Cell Mechanics has intentionally included both chapters that provide detailed recipes and those that emphasize basic principles. Presents a distinctive emphasis on matrix mechanics and their interplay with cell functions Includes highly significant topics relevant to basic and translational research, as well as tissue engineering Emphasizes mechanical input and output of cells

Cell Mechanics and Cellular Engineering

Cell Mechanics and Cellular Engineering by Van C. Mow
Publisher : Springer Science & Business Media
Release : 2012-12-06
More Info

Cell mechanics and cellular engineering may be defined as the application of principles and methods of engineering and life sciences toward fundamental understanding of structure-function relationships in normal and pathological cells and the development of biological substitutes to restore cellular functions. This definition is derived from one developed for tissue engineering at a 1988 NSF workshop. The reader of this volume will see the definition being applied and stretched to study cell and tissue structure-function relationships. The best way to define a field is really to let the investigators describe their areas of study. Perhaps cell mechanics could be compartmentalized by remembering how some of the earliest thinkers wrote about the effects of mechanics on growth. As early as 1638, Galileo hypothesized that gravity and of living mechanical forces place limits on the growth and architecture organisms. It seems only fitting that Robert Hooke, who gave us Hooke's law of elasticity, also gave us the word "cell" in his 1665 text, Micrographid, to designate these elementary entities of life. Julius Wolffs 1899 treatise on the function and form of the trabecular architecture provided an incisive example of the relationship between the structure of the body and the mechanical load it bears. In 1917, D' Arcy Thompson's On Growth and Form revolutionized the analysis of biological processes by introducing cogent physical explanations of the relationships between the structure and function of cells and organisms.

Cell Mechanics

Cell Mechanics by Arnaud Chauvière
Publisher : CRC Press
Release : 2010-01-27
More Info

Ubiquitous and fundamental in cell mechanics, multiscale problems can arise in the growth of tumors, embryogenesis, tissue engineering, and more. Cell Mechanics: From Single Scale-Based Models to Multiscale Modeling brings together new insight and research on mechanical, mathematical, physical, and biological approaches for simulating the behavior of cells, specifically tumor cells. In the first part of the text, the book discusses the powerful tool of microrheology for investigating cell mechanical properties, multiphysics and multiscale approaches for studying intracellular mechanisms in cell motility, and the role of subcellular effects involving certain genes for inducing cell motility in cancer. Focusing on models based on physical, mathematical, and computational approaches, the second section develops tools for describing the complex interplay of cell adhesion molecules and the dynamic evolution of the cell cytoskeleton. The third part explores cell interactions with the environment, particularly the role of external mechanical forces and their effects on cell behavior. The final part presents innovative models of multicellular systems for developmental biology, cancer, and embryogenesis. This book collects novel methods to apply to cells and tissues through a multiscale approach. It presents numerous existing tools while stimulating the discovery of new approaches that can lead to more effective and accurate predictions of pathologies.

Mechanics of the Cell

Mechanics of the Cell by David H. Boal
Publisher :
Release : 2012
More Info

"Exploring the mechanical features of biological cells, including their architecture and stability, this textbook is a pedagogical introduction to the interdisciplinary fields of cell mechanics and soft matter physics from both experimental and theoretical perspectives. This second edition has been greatly updated and expanded, with new chapters on complex filaments, the cell division cycle, the mechanisms of control and organization in the cell, and fluctuation phenomena. The textbook is now in full color which enhances the diagrams and allows the inclusion of new microscopy images. With more than 300 end-of-chapter exercises exploring further applications, this textbook is ideal for advanced undergraduate and graduate students in physics and biomedical engineering. A website hosted by the author contains extra support material, diagrams and lecture notes, and is available at www.cambridge.org/9780521130691"--

Mechanics of the Cell

Mechanics of the Cell by David Boal
Publisher : Cambridge University Press
Release : 2012-01-19
More Info

Exploring the mechanical features of biological cells, including their architecture and stability, this textbook is a pedagogical introduction to the interdisciplinary fields of cell mechanics and soft matter physics from both experimental and theoretical perspectives. This second edition has been greatly updated and expanded, with new chapters on complex filaments, the cell division cycle, the mechanisms of control and organization in the cell, and fluctuation phenomena. The textbook is now in full color which enhances the diagrams and allows the inclusion of new microscopy images. With around 280 end-of-chapter exercises exploring further applications, this textbook is ideal for advanced undergraduate and graduate students in physics and biomedical engineering. A website hosted by the author contains extra support material, diagrams and lecture notes, and is available at www.cambridge.org/Boal.

Advances in Cell Mechanics

Advances in Cell Mechanics by Shaofan Li
Publisher : Springer Science & Business Media
Release : 2011-11-17
More Info

"Advances in Cell Mechanics" presents the latest developments in cell mechanics and biophysics, mainly focusing on interdisciplinary research in cell biology and the biophysics of cells. Moreover, a unique feature of the book is its emphasis on the molecular and complex continuum modeling and simulations of the cells. It may be the first work that brings rigorous and quantitative scientific analysis and state-of-the-art simulation technology into cell biology research. The book is intended for researchers and graduate students working in the fields of molecular cell biology, bio-engineering and bio-mechanics, soft matter physics, computational mechanics, bio-chemistry and bio-medicine. All contributors are leading scholars in their respective fields. Dr. Shaofan Li is a professor and an expert for computational mechanics at the University of California-Berkeley, USA; Dr. Bohua Sun is a professor at Cape Peninsula University of Technology, South Africa.

Introduction to Cell Mechanics and Mechanobiology

Introduction to Cell Mechanics and Mechanobiology by Christopher R. Jacobs
Publisher : Garland Science
Release : 2012-11-16
More Info

Introduction to Cell Mechanics and Mechanobiology is designed for a one-semester course in the mechanics of the cell offered to advanced undergraduate and graduate students in biomedical engineering, bioengineering, and mechanical engineering. It teaches a quantitative understanding of the way cells detect, modify, and respond to the physical prope

Measuring Cell Mechanics

Measuring Cell Mechanics by Margaret Gardel
Publisher : Biota Publishing
Release : 2015-09-01
More Info

Cells are inherently physical entities that both experience mechanical forces from their external environment and generate their own internal forces to drive cell motion. Our particular aim here is to present the reader with an introduction to the primary tools used to measure these mechanical interactions and the material properties of cells that result from them. These approaches can be applied to a diverse array of physiological processes and systems, providing important insight into the regulatory roles of mechanical interactions in cells. We cover techniques at both the molecular and cellular scales, including those that actively and passively probe the system. Along the way we cover the fundamental principles of each approach, while emphasizing the relevant length and timescales, along with the typical magnitudes of the measurements that can be made. Each section ends by highlighting uses of the various techniques in recent relevant publications, illustrating the exciting future of cell mechanics in quantitative cell biology research.

Nano and Cell Mechanics

Nano and Cell Mechanics by Horacio D. Espinosa
Publisher : John Wiley & Sons
Release : 2012-12-12
More Info

Research in nano and cell mechanics has received much attention from the scientific community as a result of society needs and government initiatives to accelerate developments in materials, manufacturing, electronics, medicine and healthcare, energy, and the environment. Engineers and scientists are currently engaging in increasingly complex scientific problems that require interdisciplinary approaches. In this regard, studies in this field draw from fundamentals in atomistic scale phenomena, biology, statistical and continuum mechanics, and multiscale modeling and experimentation. As a result, contributions in these areas are spread over a large number of specialized journals, which prompted the Editors to assemble this book. Nano and Cell Mechanics: Fundamentals and Frontiers brings together many of the new developments in the field for the first time, and covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. Key features: • Provides an overview of recent advances in nano and cell mechanics. • Covers experimental, analytical, and computational tools used to investigate biological and nanoscale phenomena. • Covers fundamentals and frontiers in mechanics to accelerate developments in nano- and bio-technologies. • Presents multiscale-multiphysics modeling and experimentation techniques. • Examines applications in materials, manufacturing, electronics, medicine and healthcare. Nano and Cell Mechanics: Fundamentals and Frontiers is written by internationally recognized experts in theoretical and applied mechanics, applied physics, chemistry, and biology. It is an invaluable reference for graduate students of nano- and bio-technologies, researchers in academia and industry who are working in nano and cell mechanics, and practitioners who are interested in learning about the latest analysis tools. The book can also serve as a text for graduate courses in theoretical and applied mechanics, mechanical engineering, materials science, and applied physics.